543 research outputs found

    Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean

    Get PDF
    South Georgia phytoplankton blooms are amongst the largest of the Southern Ocean and are associated with a rich ecosystem and strong atmospheric carbon drawdown. Both aspects depend on the intensity of blooms, but also on their regularity. Here we use data from 12 yr of SeaWiFS (Sea-viewing Wide Field-of-view Sensor) ocean colour imagery and calculate the frequency of bloom occurrence (FBO) to re-examine spatial and temporal bloom distributions. We find that upstream of the island and outside the borders of the Georgia Basin, blooms occurred in less than 4 out of the 12 yr (FBO < 4). In contrast, FBO was mostly greater than 8 downstream of the island, i.e., to the north and northwest, and in places equal to 12, indicating that blooms occurred every year. The typical bloom area, defined as the region where blooms occurred in at least 8 out of the 12 yr, covers the entire Georgia Basin and the northern shelf of the island. The time series of surface chlorophyll <i>a</i> (Chl <i>a</i>) concentrations averaged over the typical bloom area shows that phytoplankton blooms occurred in every year between September 1997 and September 2010, and that Chl <i>a</i> values followed a clear seasonal cycle, with concentration peaks around December followed in many years by a second peak during late austral summer or early autumn, suggesting a bi-modal bloom pattern. The bloom regularity we describe here is in contrast with results of Park et al. (2010) who used a significantly different study area including regions that almost never exhibit bloom conditions

    The GEOTRACES Intermediate Data Product 2017

    Get PDF
    The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017

    Transient dynamics of a flexible rotor with squeeze film dampers

    Get PDF
    A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior

    Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies

    Get PDF
    The Arctic is undergoing unprecedented environmental change. Rapid warming, decline in sea ice extent, increase in riverine input, ocean acidification and changes in primary productivity are creating a crucible for multiple concurrent environmental stressors, with unknown consequences for the entire arctic ecosystem. Here, we synthesised 30 years of data on the stable carbon isotope (δ13 C) signatures in dissolved inorganic carbon (δ13 C-DIC; 1977 to 2014), marine and riverine particulate organic carbon (δ13 C-POC; 1986 to 2013) and tissues of marine mammals in the Arctic. δ13 C values in consumers can change as a result of environmentally driven variation in the δ13 C values at the base of the food web or alteration in the trophic structure, thus providing a method to assess the sensitivity of food webs to environmental change. Our synthesis reveals a spatially heterogeneous and temporally evolving δ13 C baseline, with spatial gradients in the δ13 C-POC values between arctic shelves and arctic basins likely driven by differences in productivity and riverine and coastal influence. We report a decline in δ13 C-DIC values (-0.011 ‰ y-1 ) in the Arctic, reflecting increasing anthropogenic carbon dioxide (CO2 ) in the Arctic Ocean (i.e. Suess effect), which is larger than predicted. The larger decline in δ13 C-POC values and δ13 C in arctic marine mammals reflects the anthropogenic CO2 signal as well as the influence of a changing arctic environment. Combining the influence of changing sea ice conditions and isotopic fractionation by phytoplankton, we explain the decadal decline in δ13 C-POC values in the Arctic Ocean and partially explain the δ13 C values in marine mammals with consideration of time-varying integration of δ13 C values. The response of the arctic ecosystem to ongoing environmental change is stronger than we would predict theoretically, which has tremendous implications for the study of food webs in the rapidly changing Arctic Ocean

    Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic

    Get PDF
    Total and soluble trace metal concentrations were determined in atmospheric aerosol and rainwater samples collected during seven cruises in the south-east Atlantic. Back trajectories indicated the samples all represented remote marine air masses, consistent with climatological expectations. Aerosol trace metal loadings were similar to previous measurements in clean, marine air masses. Median total Fe, Al, Mn, V, Co and Zn concentrations were 206, 346, 5, 3, 0.7 and 11 pmol m-3 respectively. Solubility was operationally defined as the fraction extractable using a pH4.7 ammonium acetate leach. Median soluble Fe, Al, Mn, V, Co, Zn, Cu, Ni, Cd and Pb concentrations were 6, 55, 1, 0.7, 0.06, 24, 2, 1, 0.05 and 0.3 pmol m-3 respectively. Large ranges in fractional solubility were observed for all elements except Co; median solubility values for Fe, Al and Mn were below 20% while the median for Zn was 74%. Volume weighted mean rainwater concentrations were 704, 792, 32, 10, 3, 686, 25, 0.02, 0.3 and 10 nmol L-1 for Fe, Al, Mn, V, Co, Zn, Cu, Ni, Cd and Pb respectively (n = 6). Wet deposition fluxes calculated from these values suggest rain makes a significant contribution to total deposition in the study area for all elements except perhaps Ni

    An intermediate-depth source of hydrothermal 3He and dissolved iron in the North Pacific

    Get PDF
    We observed large water column anomalies in helium isotopes and trace metal concentrations above the Loihi Seamount. The 3He/4He of the added helium was 27.3 times the atmospheric ratio, clearly marking its origin to a primitive mantle plume. The dissolved iron to 3He ratio (dFe:3He) exported to surrounding waters was 9.3 ± 0.3 × 106. We observed the Loihi 3He and dFe “signal” at a depth of 1100 m at several stations within ∼100 – 1000 km of Loihi, which exhibited a distal dFe:3He ratio of ∼4 × 106, about half the proximal ratio. These ratios were remarkably similar to those observed over and near the Southern East Pacific Rise (SEPR) despite greatly contrasting geochemical and volcanictectonic origins. In contrast, the proximal and distal dMn:3He ratios were both ∼ 1 × 106, less than half of that observed at the SEPR. Dissolved methane was minimally enriched in waters above Loihi Seamount and was distally absent. Using an idealized regional-scale model we replicated the historically observed regional 3He distribution, requiring a hydrothermal 3He source from Loihi of 10.4 ± 4.2 mola−1, ∼2% of the global abyssal hydrothermal 3He flux. From this we compute a corresponding dFe flux of ∼40 Mmola−1. Global circulation model simulations suggest that the Loihi-influenced waters eventually upwell along the west coast of North America, also extending into the shallow northwest Pacific, making it a possibly important determinant of marine primary production in the subpolar North Pacific

    Atmospheric aerosols at the Pierre Auger Observatory and environmental implications

    Full text link
    The Pierre Auger Observatory detects the highest energy cosmic rays. Calorimetric measurements of extensive air showers induced by cosmic rays are performed with a fluorescence detector. Thus, one of the main challenges is the atmospheric monitoring, especially for aerosols in suspension in the atmosphere. Several methods are described which have been developed to measure the aerosol optical depth profile and aerosol phase function, using lasers and other light sources as recorded by the fluorescence detector. The origin of atmospheric aerosols traveling through the Auger site is also presented, highlighting the effect of surrounding areas to atmospheric properties. In the aim to extend the Pierre Auger Observatory to an atmospheric research platform, a discussion about a collaborative project is presented.Comment: Regular Article, 16 pages, 12 figure

    Dissolved Organic Matter in the Upwelling System off Peru: Imprints of Bacterial Activity and Water Mass Characteristics

    Get PDF
    Microbial degradation of dissolved organic matter (DOM) contributes to the formation and preservation of oxygen minimum zones (OMZs) in the ocean, but information on the spatial distribution and molecular composition of DOM in OMZ regions is scarce. We quantified molecular components of DOM that is, dissolved amino acids (DAA) and dissolved combined carbohydrates (DCCHO), in the upwelling region off Peru. We found the highest concentrations of DCCHO in fully oxygenated surface waters steeply declining at shallow depth. The highest DAA concentrations were observed close to the surface also, but attenuation of DAA concentration over depth was less pronounced. Compositional changes of DCCHO were strongest within more oxygenated waters. Compositional changes of DAA were also evident under suboxic conditions (<5 µmol O2 kg−1) and indicated bacterial peptide degradation. Moreover, specific free amino acids (alanine and threonine) were enhanced within suboxic waters, pointing to a potential production of dissolved organic nitrogen under suboxic conditions. Our results therewith suggest that deoxygenation supports a spatial decoupling of DCCHO and DAA production and degradation dynamics and give new insights to carbon and nitrogen cycling in the OMZ off Peru
    corecore